

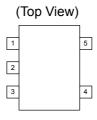
FEATURES

- Programmable charge current up to 800mA
- No MOSFET, sense resistor or blocking diode required
- Complete linear charger in thin SOT package for single cell lithium-ion batteries
- Constant-current/constant-voltage operation with thermal regulation to maximize charge rate without risk of overheating
- Charges single cell Li-ion batteries directly from USB port
- Preset 4.2V charge voltage with ±1% accuracy
- Charge current monitor output for gas gauging
- Automatic recharge
- Charge status output pin
- C/10 charge termination
- 25uA supply current in shutdown
- 2.9V trickle charge threshold
- Soft-start limits inrush current
- Space saving ThinSOT23-5L package

■ APPLICATIONS

- Cellular phones, PDAs
- Bluetooth applications
- Charging docks and Cradles
- MP3 players

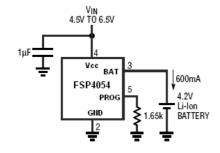
■ GENERAL DESCRIPTION

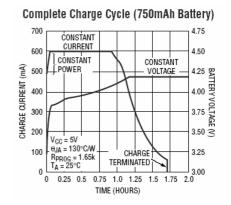

The FSP4054 is a complete constant-current/constant-voltage linear charger for cell lithium-ion batteries. Its Thin SOT23-5L package and low external component count make the FSP4054 ideally suited for portable applications. Furthermore, the FSP4054 is specifically designed to work within USB power specifications.

No external sense resistor is needed, and no blocking diode is required due to the internal MOSFET architecture. Thermal feedback regulators the charge current to limit the die temperature during high power operation or high ambient temperature. The charge voltage is fixed at 4.2V, and the charge current can be programmed externally with a single resistor. The FSP4054 automatically terminates the charge cycle when the charge current drops to 1/10th the programmed value after the final float voltage is reached.

When the input supply (wall adapter or USB supply) is removed, the FSP4054 automatically enters a low current state, dropping the battery drain current to less than 2uA. The FSP4054 can be put into shutdown mode, reducing the supply current to 25uA.

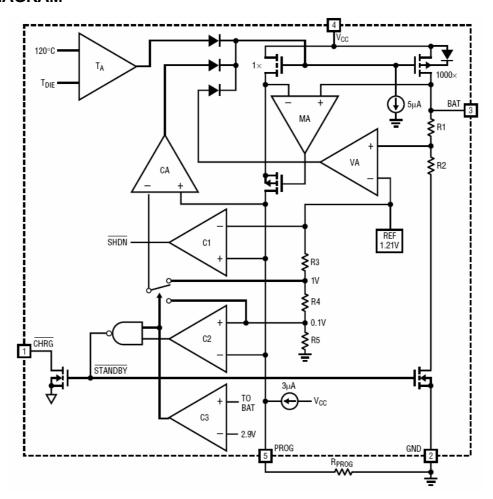
Other features include charge current monitor, undervoltage lockout, automatic recharge and a status pin to indicate charge termination and the presence of an input voltage.


■ PIN CONFIGURATION


■ PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1	CHRG	Open-drain charge status output
2	GND	Ground
3	BAT	Charge current output
4	Vcc	Positive input supply voltage
5	PROG	Charge current program, Charge current monitor and shutdown pin

■ TYPICAL APPLICATIONS CIRCUITS



600mA single cell Li-ion charger

■ BLOCK DIAGRAM

■ PIN FUNCTION

CHRG: When the battery is charging, the CHRG pin is pulled low by an internal N-channel MOSFET. When the charge cycle is completed, a weak pull-down of approximately 20uA is connected to the CHRG pin, including an "AC present" condition. When the FSP4054 detects an undervoltage lockout condition, CHRG is forced high impedance. **GND**: Ground.

BAT: Provides charge current to the battery and regulators the final voltage to 4.2V. An internal precision resistor divider from this pin sets the float voltage which is disconnected in shutdown mode.

Vcc: Provides power to the charger. Vcc can range from 4.25V to 6.5V and should be bypassed with at least a 1uF capacitor. When Vcc drops to within 30mV of the BAT pin voltage, the FSP4054 enters shutdown mode, dropping I_{BAT} to less than 2uA.

PROG: The charge current is programmed by connected a 1% resistor, R_{PROG} , to ground. When charging in constant-current mode, this pin servos to 1V. In all modes, the voltage on this pin can be used to measure the charge current using the following formula:

$$I_{BAT} = (V_{PROG}/R_{PROG}) \cdot 1000$$

The PROG pin can also be used to shut down the charger. Disconnecting the program resistor from ground allows a 3uA current to pull the PROG pin high. When it reaches the 1.21V shutdown threshold voltage, the charger enters shutdown mode, charging stops and the input supply current drops to 25uA. This pin is also clamped to approximately 2.4V. Driving this pin to voltages beyond the clamp voltage will draw current as high as 1.5mmA. Reconnected R_{PROG} to ground will return the charger to normal operation.

FSP4054

OPERATION

The FSP4054 is a single cell lithium-ion battery charger using a constant-current/constant-voltage algorithm. It can deliver up to 800mA of charge current (using a good thermal PCB layout) with a final voltage accuracy of ±1%. The FSP4054 includes an internal P-channel power MOSFET and thermal regulation circuitry. No blocking diode or external current sense resistor is required; thus, the basic charger circuit requires only two external components. Furthermore, the FSP4054 is capable of operating from a USB power source.

Normal charge cycle

A charge cycle begins when the voltage at the Vcc pin rises above the UVLO threshold level and a 1% program resistor is connected from the PROG pin to ground or when a battery is connected to the charger output. If the BAT pin is less than 2.9V, the charger enters trickle charge mode. In this mode, the FSP4054 supplies approximately 1/10 the programmed charge current to bring the battery voltage up to a safe level for full current charging. When the BAT pin voltage rises above 2.9V, the charger enters constant-current mode, where the programmed charge current is supplied to the battery. When the BAT pin approaches the final float voltage (4.2V), the FSP4054 enters constant-voltage mode and the charge current begins to decrease. When the charge current drops to 1/10 of the programmed value, the charge cycle ends.

Programmed charge current

The charge current is programmed using a single resistor from the PROG pin to ground. The battery charge current is 1000 times the current out of the PROG pin. The program resistor and the current are calculated using the following equations:

$$R_{PROG} = \frac{1000V}{I_{CHG}}, \quad I_{CHG} = \frac{1000V}{R_{PROG}}$$

The charge current out of the BAT pin can be determined at any time by monitoring the PROG pin voltage using the following equation: $I_{BAT} = \frac{V_{PROG}}{R_{PROG}} \bullet 1000$

Charge termination

A charge cycle is terminated when the charge current falls to $1/10^{th}$ the programmed value after the final float voltage is reached. This condition is detected by using an internal, filtered comparator to monitor the PROG pin. When the PROG pin voltage falls below 100mV for longer than t_{TERM} , charging is terminated. The charge current is latched off and the FSP4054 enters standby mode, where the input supply current drops to 200uA. (Note: C/10 termination is disabled in trickle charging and thermal limiting modes)

When charging, transient loads on the BAT pin can cause the PROG pin to fall below 100mV for short periods of time before the DC charge current has dropped to 1/10th the programmed value. The 1ms filter time on the termination comparator ensures that transient loads of this nature do not result in premature charge cycle termination. Once the average charge current drops below 1/10th the programmed value, the FSP4054 terminates the charge cycle and ceases to provide any current through the BAT pin. In this state, all loads on the BAT pin must be supplied by the battery.

The FSP4054 constantly monitor the BAT pin voltage in standby mode. If this voltage drops below the 4.05V recharge threshold, another charge cycle begins and current is once again supplied to the battery. To manually restart a charge cycle when in standby mode, the input voltage must be removed and reapplied, or the charger must be shut down and restarted using the PROG pin. The figure 1shows the state diagram of a typical charge cycle.

Charge status indicator

The charge status output has three different states: strong pull-down(10mA), weak pull-down (20uA) and high impedance. The strong pull-down state indicates that the FSP4054 is in a charge cycle. Once the charge cycle has terminated, the pin state is determined by undervoltage lockout conditions. A weal pull-down indicates that Vcc meets the UVLO conditions and the FSP4054 is ready to charge. High impedance indicates that the FSP4054 is in undervoltage lockout mode: either VCC is less than 100mV above the BAT pin voltage or insufficient voltage is applied to the VCC pin. A microprocessor can be used to distinguish between these three states—this method is discussed in the Applications Information section.

Thermal limiting

An internal thermal feedback loop reduces the programmed charge current if the die temperature attempts to rise above a preset value of approximately 120° C. This feature protects the FSP4054 from excessive temperature and allows the user to push the limits of the power handling capability of a given circuit board without risk of damaging the FSP4054. The charge current can be set according to typical (not worst-case) ambient temperature with the

FSP4054

assurance that the charger will automatically reduce the current in worst-case conditions. ThinSOT power considerations are discussed further in the Applications Information section.

Undervoltage Lockout UVLO)

An internal undervoltage lockout circuit monitors the input voltage and keeps the charger in shutdown mode until VCC rises above the undervoltage lockout threshold. The UVLO circuit has a built-in hysteresis of 200mV. Furthermore, to protect against reverse current in the power MOSFET, the UVLO circuit keeps the charger in shutdown mode if VCC falls to within 30mV of the battery voltage. If the UVLO comparator is tripped, the charger will not come out of shutdown mode until VCC rises 100mV above the battery voltage.

Manual shutdown

At any point in the charge cycle, the FSP4054 can be put into shutdown mode by removing R_{PROG} thus floating the PROG pin. This reduces the battery drain current to less than 2mA and the supply current to less than 50mA. A new charge cycle can be initiated by reconnecting the program resistor.

In manual shutdown, the CHRG pin is in a weak pull-down state as long as VCC is high enough to exceed the UVLO conditions. The CHRG pin is in a high impedance state if the FSP4054 is in undervoltage lockout mode: either VCC is within 100mV of the BAT pin voltage or insufficient voltage is applied to the VCC pin.

Automatic recharge

Once the charge cycle is terminated, the FSP4054 continuously monitors the voltage on the BAT pin using a comparator with a 2ms filter time ($t_{RECHARGE}$). A charge cycle restarts when the battery voltage falls below 4.05V (which corresponds to approximately 80% to 90% battery capacity). This ensures that the battery is kept at or near a fully charged condition and eliminates the need for periodic charge cycle initiations. CHRG output enters a strong pulldown state during recharge cycles.

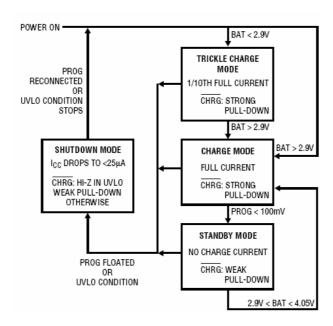


Figure 1:the state diagram of a typical charge cycle

■ **ABSOLUTE MAXIMUM RATINGS**(NOTE 1)

Parameter	Rating	Unit
Input Supply Voltage	-0.3 to 10	V
PROG	-0.3 to Vcc + 0.3	V
BAT	-0.3 to 7	V
CHRG	-0.3 to 10	V
BAT short-circuit duration	continuous	
BAT pin current	800	mA
PROG pin current	800	uA
Operating temperature(Note 2)	-40 to 85	°C
Maximum Junction Temperature	125	°C
Storage Temperature	-65 to 150	°C
Lead Temperature (Soldering, 10 sec)	300	°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

Note 2: The FSP4054 is guaranteed to meet performance specifications from 0°C ~ 70°C. Specifications over the -40°C ~85°C operating temperature range are assured by design, characterization and correlation with statistical process controls.

■ ELECTRICAL CHARACTERISTICS

The * denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA=25°C. Vcc=5V. unless otherwise noted.

PARAMETER	SYMBO L	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Input Voltage	V_{cc}	*	4.25		6.5	V	
	Icc	*Charge mode(Note3) R _{PROG} =10k		300	2000		
Input supply current		*Standby mode(Charge terminated)		200	500	uA	
трас варру ватопс		*Shutdown mode(R_{PROG} not connected, $V_{CC} < V_{BAT}$, or $V_{CC} < V_{UV}$)		25	50		
Regulated output (Float) voltage	V_{FLOAT}	0°C <ta<85°c, i<sub="">BAT=40mA</ta<85°c,>	4.158	4.2 4.242		V	
	I _{BAT}	*R _{PROG} =10k, current mode	93	100	107	mA	
		*R _{PROG} =2k, current mode 465		500	535	mA	
BAT pin current		*V _{BAT} =4.2V, Standby mode 0		-2.5	-6	uA	
Dr. Com Com Com		Shutdown mode(R _{PROG} not connected,		±1	±2	uA	
		V _{CC} =0V, Sleep mode		±1	±2	uA	
Trickle charge current	I _{TRIKL}	$V_{BAT} < V_{TRIKL}$, $R_{PROG} = 2k$	20	45	70	mΑ	
Trickle charge threshold voltage	rge threshold		2.8	2.9	3.0	V	
voltage	Trickle charge hystersis voltage V _{TRHYS} R _{PROG} =10k		60	80	110	mV	
threshold	Vcc undervoltage lockout threshold Vuv *From Vcc low to high		3.7	3.8	3.92	V	
Vcc undervoltage lockout hystersis	V _{UVHYS}	*	150	200	300	mV	
Manual shutdown threshold	V _{MSD}	*PROG pin rising	1.15	1.21	1.30	V	
voltage		*PROG pin falling	0.9	1.0	1.0	v	
V _{CC} – V _{BAT} lockout threshold	V _{ASD}	Vcc from low to high 70 1		100	140	mV	
voltage	,	Vcc from high to low	5	30	50		

5/15

FSP4054

■ **ELECTRICAL CHARACTERISTICS** (CONTINUED)

The * denotes specifications which apply over the full operating temperature range, otherwise specifications are at TA=25°C. Vcc=5V, unless otherwise noted.

PARAMETER	SYMBO L	TEST CONDITIONS	MIN	TYP	MAX	UNIT
C/10 termination current	I _{TERM}	*R _{PROG} =10k (Note 4)	0.085	0.10	0.115	mA/mA
threshold		*R _{PROG} =2k	0.005			
PROG pin voltage	V_{PROG}	*R _{PROG} =10k, current mode	0.93	1.0	1.07	V
CHRG pin weak pull-down current	I _{CHRG}	V _{CHRG} =5V	8	20	35	uA
CHRG pin output low voltage		I _{CHRG} =5mA		0.35	0.6	V
Recharge battery threshold voltage	ΔV_{RECHRG}	V _{FLOAT} -V _{RECHRG}	100	150	200	mV
Junction temperature in constant temperature mode	T _{LIM}			120		°C
Power FET "ON" resistance (between Vcc and V _{BAT})	R _{ON}			600		mΩ
Soft-start time	tss	=0 to I_{BAT} =1000V/ R_{PROG}		100		us
Recharge comparator filter time	t _{RECHARGE}	VI _{BAT} high to low	0.75	2	4.5	ms
Termination comparator filter time	T _{TERM}	I _{BAT} falling below I _{CHRG} /10	400	1000	2500	us
PROG pin pull-up current	I_{PROG}			3		uA

Note 3: Supply current includes PROG pin current (approximately 100uA) but does not include any current delivered to the battery through the BAT pin (approximately 100mA)

Note 4: I_{TERM} is expressed as a function of measured full charge current with indicated PROG resistor

■ APPLICATION INFORMATION

Stability Considerations

The constant-voltage mode feedback loop is stable without an output capacitor provided a battery is connected to the charger output. With no battery present, an output capacitor is recommended to reduce ripple voltage. When using high value, low ESR ceramic capacitors, it is recommended to add a 1W resistor in series with the capacitor. No series resistor is needed if tantalum capacitors are used. In constant-current mode, the PROG pin is in the feedback loop, not the battery. The constant-current mode stability is affected by the impedance at the PROG pin. With no additional capacitance on the PROG pin, the charger is stable with program resistor values as high as 20k. However, additional capacitance on this node reduces the maximum allowed program resistor. The pole frequency at the PROG pin should be kept above 100kHz. Therefore, if the PROG pin is loaded with a capacitance, C_{PROG} , the following equation can be used to calculate the maximum resistance value for R_{PROG} :

$$R_{PROG} \le \frac{1}{2\pi \cdot 10^5 \cdot C_{PROG}}$$

Average, rather than instantaneous, charge current may be of interest to the user. For example, if a switching power supply operating in low current mode is connected in parallel with the battery, the average current being pulled out of the BAT pin is typically of more interest than the instantaneous current pulses. In such a case, a simple RC filter can be used on the PROG pin to measure the average battery current as shown in Figure 2. A 10k resistor has been added between the PROG pin and the filter capacitor to ensure stability.

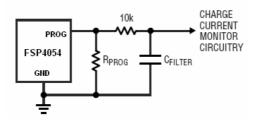


Figure 2: Isolating capacitive load on PROG pin and filtering

Power Dissipation

The conditions that cause the FSP4054 to reduce charge current through thermal feedback can be approximated by considering the power dissipated in the IC. Nearly all of this power dissipation is generated by the internal MOSFET -this is calculated to be approximately:

$$\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{CC} - \mathsf{V}_\mathsf{BAT}) \bullet \mathsf{I}_\mathsf{BAT}$$

where P_D is the power dissipated, VCC is the input supply voltage, V_{BAT} is the battery voltage and I_{BAT} is the charge current. The approximate ambient temperature at which the thermal feedback begins to protect the IC is:

$$T_{A} = 120^{\circ}C - P_{D}\Theta_{JA}$$

$$T_{A} = 120^{\circ}C - (V_{CC} - V_{BAT}) \bullet I_{BAT} \bullet \Theta_{JA}$$

Example: An FSP4054 operating from a 5V USB supply is programmed to supply 400mA full-scale current to a discharged Li-lon battery with a voltage of 3.75V. Assuming θ_{JA} is 150° C/W, the ambient temperature at which the FSP4054 will begin to reduce the charge current is approximately:

$$T_A = 120^{\circ}C - (5V - 3.75V) \cdot (400\text{mA}) \cdot 150^{\circ}\text{C/W}$$

 $T_A = 120^{\circ}C - 0.5W \cdot 150^{\circ}\text{C/W} = 120^{\circ}\text{C} - 75^{\circ}\text{C}$
 $T_A = 45^{\circ}\text{C}$

The FSP4054 can be used above 45° C ambient, but the charge current will be reduced from 400mA. The approximate current at a given ambient temperature can be approximated by:

$$I_{BAT} = \frac{120^{\circ}C - T_{A}}{\left(V_{CC} - V_{BAT}\right) \bullet \Theta_{JA}}$$

Using the previous example with an ambient temperature of $60^{\circ}\,$ C, the charge current will be reduced to approximately:

$$I_{BAT} = \frac{120^{\circ}\text{C} - 60^{\circ}\text{C}}{\left(5\text{V} - 3.75\text{V}\right) \cdot 150^{\circ}\text{C/W}} = \frac{60^{\circ}\text{C}}{187.5^{\circ}\text{C/A}}$$

$$I_{BAT} = 320\text{mA}$$

FSP4054

Moreover, when thermal feedback reduces the charge current, the voltage at the PROG pin is also reduced proportionally as discussed in the Operation section. It is important to remember that FSP4054 applications do not need to be designed for worst-case thermal conditions since the IC will automatically reduce power dissipation when the junction temperature reaches approximately 120° C.

Increasing Thermal Regulation Current

Reducing the voltage drop across the internal MOSFET can significantly decrease the power dissipation in the IC. This has the effect of increasing the current delivered to the battery during thermal regulation. One method is by dissipating some of the power through an external component, such as a resistor or diode.

Example: An FSP4054 operating from a 5V wall adapter is programmed to supply 800mA full-scale current to a discharged Li-lon battery with a voltage of 3.75V. Assuming θ_{JA} is 125°C/W, the approximate charge current at an ambient temperature of 25°C is:

$$I_{BAT} = \frac{120 \text{ °C} - 25 \text{ °C}}{(5V - 3.75V) \cdot 125 \text{ °C} / W} = 608\text{mA}$$

By dropping voltage across a resistor in series with a 5V wall adapter (shown in Figure 3), the on-chip power dissipation can be decreased, thus increasing the thermally regulated charge current

$$I_{BAT} = \frac{120^{\circ}C - 25^{\circ}C}{(V_S - I_{BAT}R_{CC} - V_{BAT}) \bullet \theta_{JA}}$$

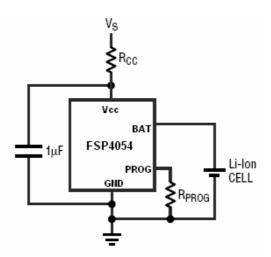


Figure 3: A circuit to maximize thermal mode charge current

Solving for IBAT using the quadratic formula.

$$I_{BAT} = \frac{(V_S - V_{BAT}) - \sqrt{\left((V_S - V_{BAT})^2 \frac{4R_{CC}(120^{\circ}C - T_A)}{\theta_{JA}}\right)}}{2R_{CC}}$$

Using R_{CC} = 0.25W, V_S = 5V, V_{BAT} = 3.75V, T_A = 25 $^{\circ}$ C and $^{\theta}$ _{JA} = 125 $^{\circ}$ C/W we can calculate the thermally regulated charge current to be:

 $I_{BAT} = 708.4 \text{mA}$

While this application delivers more energy to the battery and reduces charge time in thermal mode, it may actually lengthen charge time in voltage mode if VCC becomes low enough to put the FSP4054 into dropout. Figure 4 shows how this circuit can result in dropout as R_{CC} becomes large.

This technique works best when R_{CC} values are minimized to keep component size small and avoid dropout. Remember to choose a resistor with adequate power handling capability.

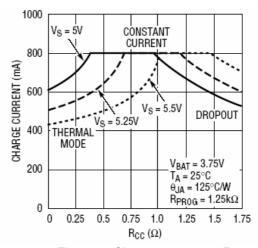


Figure 4: Charge current vs R_{CC}

VCC Bypass Capacitor

Many types of capacitors can be used for input bypassing, however, caution must be exercised when using multilayer ceramic capacitors. Because of the self-resonant and high Q characteristics of some types of ceramic capacitors, high voltage transients can be generated under some start-up conditions, such as connecting the charger input to a live power source. Adding a 1.5W resistor in series with an X5R ceramic capacitor will minimize start-up voltage transients. For more information, refer to Application Note 88.

Charge Current Soft-Start

The FSP4054 includes a soft-start circuit to minimize the inrush current at the start of a charge cycle. When a charge

cycle is initiated, the charge current ramps from zero to the full-scale current over a period of approximately 100ms. This has the effect of minimizing the transient current load on the power supply during start-up.

CHRG Status Output Pin

The CHRG pin can provide an indication that the input voltage is greater than the undervoltage lockout threshold level. A weak pull-down current of approximately 20mA indicates that sufficient voltage is applied to VCC to begin charging. When a discharged battery is connected to the charger, the constant current portion of the charge cycle begins and the CHRG pin pulls to ground. The CHRG pin can sink up to 10mA to drive an LED that indicates that a charge cycle is in progress.

When the battery is nearing full charge, the charger enters the constant-voltage portion of the charge cycle and the charge current begins to drop. When the charge current drops below 1/10 of the programmed current, the charge cycle ends and the strong pull-down is replaced by the 20mA pull-down, indicating that the charge cycle has ended. If the input voltage is removed or drops below the undervoltage lockout threshold, the CHRG pin becomes high impedance. Figure 5 shows that by using two different value pull-up resistors, a microprocessor can detect all three states from this pin.

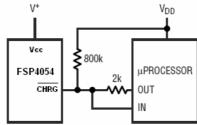


Figure 5: Microprocessor to determine CHRG state

To detect when the FSP4054 is in charge mode, force the digital output pin (OUT) high and measure the voltage at the CHRG pin. The N-channel MOSFET will pull the pin voltage low even with the 2k pull-up resistor. Once the charge cycle terminates, the N-channel MOSFET is turned off and a 20mA current source is connected to the CHRG pin. The IN pin will then be pulled high by the 2k pull-up resistor. To determine if there is a weak pull-down current, the OUT pin should be forced to a high impedance state. The weak current source will pull the IN pin low through the 800k resistor; if CHRG is high impedance, the IN pin will be pulled high, indicating that the part is in a UVLO state.

Reverse Polarity Input Voltage Protection

FSP4054

In some applications, protection from reverse polarity voltage on VCC is desired. If the supply voltage is high enough, a series blocking diode can be used. In other cases, where the voltage drop must be kept low a Pchannel MOSFET can be used (as shown in Figure 6).

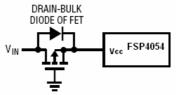


Figure 6: Low loss input reverse polarity protection

USB and Wall Adapter Power

The FSP4054 allows charging from both a wall adapter and a USB port. Figure 7 shows an example of how to combine wall adapter and USB power inputs. A P-channel MOSFET, MP1, is used to prevent back conducting into the USB port when a wall adapter is present and a Schottky diode, D1, is used to prevent USB power loss through the 1k pull-down resistor.

Typically a wall adapter can supply more current than the 500mA-limited USB port. Therefore, an N-channel MOSFET, MN1, and an extra 10k program resistor are used to increase the charge current to 600mA when the wall adapter is present.

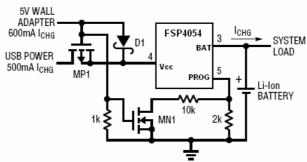
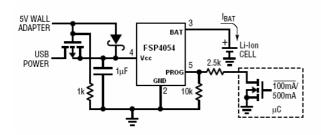
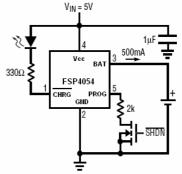
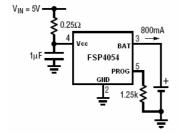
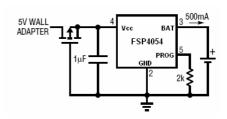




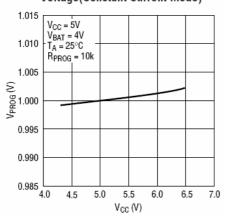
Figure 7: Combining wall adapter and USB power


■ TYPICAL APPLICATIONS

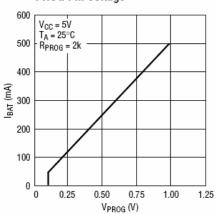


USB/wall adapter power Li-ion charger

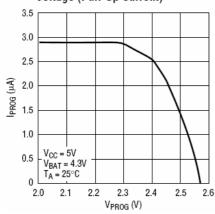
Full featured single cell Li-ion charger

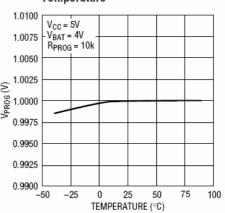

800mA Li-ion charger with external power dissipation Basic

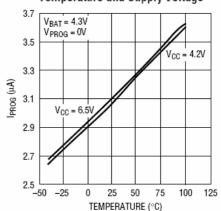
Basic Li-ion charger with reverse polarity input protection

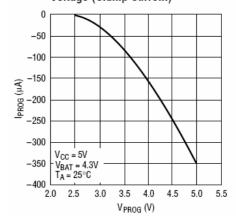


■ TYPICAL PERFORMANCE CHARACTERISTICS

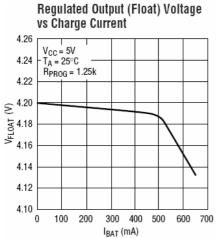



Charge Current vs PROG Pin Voltage

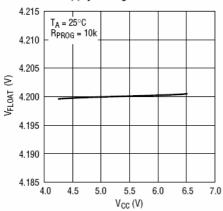

PROG Pin Current vs PROG Pin Voltage (Pull-Up Current)

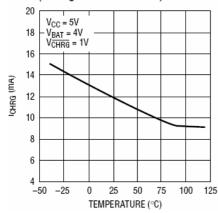

PROG Pin Voltage vs Temperature

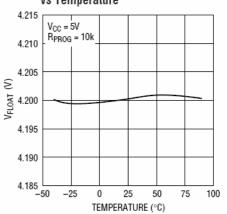
PROG Pin Pull-Up Current vs Temperature and Supply Voltage

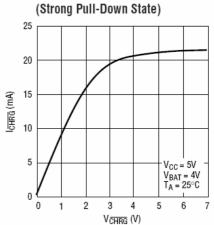


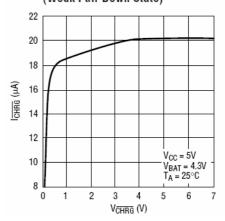
PROG Pin Current vs PROG Pin Voltage (Clamp Current)



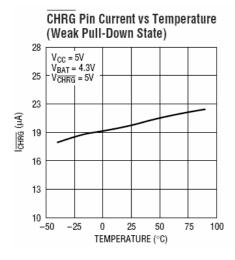

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

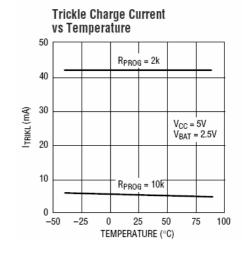


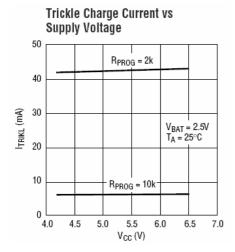

CHRG Pin Current vs Temperature (Strong Pull-Down State)

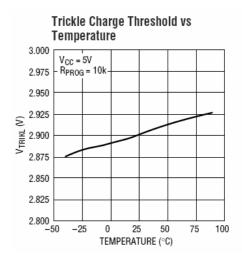


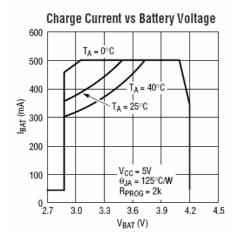
CHRG Pin I-V Curve

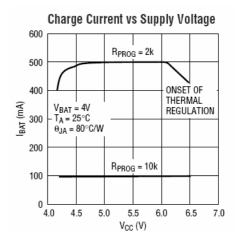


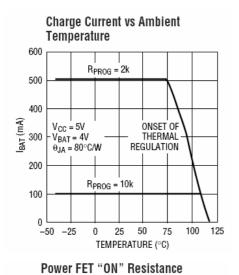

CHRG Pin I-V Curve (Weak Pull-Down State)

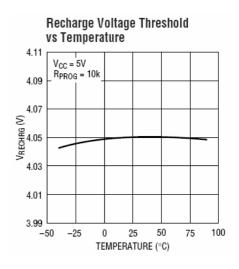


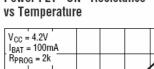


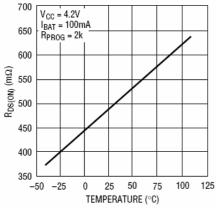

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)



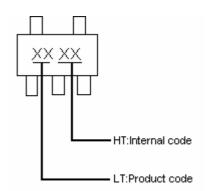




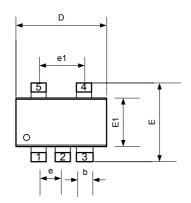


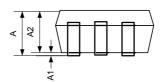


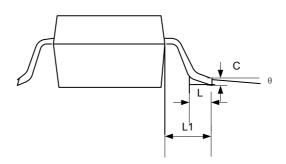
TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)



ORDERING INFORMATION




MARKING INFORMATION



■ PACKAGE INFORMATION

Symbol	Dimensions I	n Millimeters	Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α		1.00		0.040	
A1	0.000	0.100	0.000	0.004	
A2	0.800	0.900	0.032	0.036	
b	0.300	0.400	0.012	0.016	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	2.650	2.950	0.104	0.116	
E1	1.500	1.700	0.060	0.068	
L	0.300	0.600	0.012	0.024	
L1	0.700REF		0.028	REF	
е	0.95 Bsc.		0.038 Bsc.		
e1	1.90 Bsc.		0.076 Bsc.		
θ	O°	8°	O°	8°	